Roger Access Control System

Instrukcja obsługi czytnika LRT-1

Wersja produktu: v1.0 Wersja dokumentu: Rev. D

Budowa i przeznaczenie

LRT-1 jest czytnikiem zbliżeniowym dalekiego zasięgu. W komplecie z czytnikiem dostarczany jest interfejs komunikacyjny MCI-1, za pośrednictwem, którego czytnik może być dołączony zarówno do kontrolerów serii MC16 (system RACS 5) jak i kontrolerów serii PRxx1/PRxx2 (system RACS 4). W obydwu trybach czytnik zwraca 32 bity kod karty. LRT-1 umożliwia identyfikacje użytkowników za pośrednictwem kart zbliżeniowych standardu EM 125 kHz na odległości do 1m. Czytnik może być instalowany na zewnątrz budynków.

Zasilanie

Czytnik jak i współpracujący z nim interfejs MCI-1 wymagają zasilania z napięcia stałego w zakresie 11-15V. Napięcie to może być doprowadzone z kontrolera dostępu, z którym współpracuje czytnik lub z osobnego zasilacza. Ze względu na relatywnie duży prąd zasilania (ok. 300mA) należy tak dobrać przekroje przewodów zasilających czytnik, aby wypadkowy spadek napięcia zasilania pomiędzy źródłem zasilania a czytnikiem nie przekraczał wartości 1V. Dobór właściwych przekrojów przewodów zasilania jest szczególnie krytyczny w sytuacji, gdy czytnik jest zasilany z kontrolera znajdującego się w znacznej odległości od czytnika. W przypadku dużej odległości pomiędzy kontrolerem a czytnikiem należy rozważyć użycie dodatkowego zasilacza umieszczonego blisko czytnika. W takim przypadku, minus zasilacza należy połączyć z zaciskiem COM interfejsu MCI-1 przy pomocy przewodu o dowolnie małym przekroju.

Uwaga: Obecność zakłóceń w napięciu zasilającym może być powodem redukcji zasięgu odczytu i dlatego do zasilania czytnika należy stosować zasilacze o odpowiednio niskim poziomie zakłóceń, najlepiej zasilacze analogowe.

Rys. 1 Zasilanie czytnika LRT-1 z osobnego zasilacza (np. PS20)

Rys. 2 Zasilanie czytnika LRT-1 z zasilacza systemowego (np. z kontrolera)

Zasięg odczytu

W optymalnych warunkach czytnik umożliwia odczyt kart EM 125 na odległości do 95 cm. <u>Zasięg ten</u> <u>uzyskiwany jest dla karty ISO typu EMC-3 (Roger) przy optymalnym ułożeniu karty względem czytnika oraz</u> <u>przy braku zakłóceń elektrycznych generowanych w jego otoczeniu</u>. Zarówno obecność przedmiotów metalowych, jaki i zakłóceń elektrycznych może redukować zasięgu odczytu. W przybliżeniu, wpływ przedmiotów metalowych jest do pominięcia, gdy znajdują się one w odległości większej niż 1m od czytnika. Orientacyjnie, zamontowanie czytnika na dystansie ok. 15 cm od metalowej ściany redukuje zasięg odczytu o około 50%. W przypadku, gdy odległość od metalowej ściany wynosi ok. 25cm to zasięg spada o ok. 15%. Zamontowanie czytnika w odległości mniejszej niż 15 cm może spowodować całkowity brak odczytu kart. W przypadku montażu czytnika na metalowym słupku o przekroju nie większym niż 10cmx10cm zasięg czytnika redukuje się o ok. 15%.

Uwaga: Zasięg odczytu nieznacznie (ok. 5%) maleje dla napięć zasilających z zakresu 11-12V, co nie jest objawem usterki urządzenia, lecz jego właściwością.

Uwaga: Każdorazowo po załączeniu zasilania czytnik wykonuje procedurę automatycznego strojenia obwodów antenowych i dopasowuje się do obecności przedmiotów metalowych znajdujących się w jego otoczeniu. Zmiany w wielkości i lokalizacji przedmiotów metalowych w trakcie, gdy czytnik jest pod zasilaniem mogą wpłynąć na zmniejszenie zasięgu czytania i dlatego, każdorazowo po wystąpieniu tego typu zmian należy zrestartować czytnik celem powtórzenia procesu automatycznego strojenia i dopasowania do nowych warunków pracy.

Kontakty programujące

Interfejs MCI-1 posiada zestaw kontaktów programujących, które są wykorzystywane do jego programowania oraz innych czynności serwisowych.

Rys. 3 Rozmieszczenie kontaktów programujących i serwisowych

Kontakt	Funkcja
MD1	Pierwszy kontakt wyboru trybu pracy interfejsu (RACS 4 lub RACS 5)
MD2	Drugi kontakt wyboru trybu pracy interfejsu (RACS 4 lub RACS 5)
RES MD1 MD2 C C C C C C C C C C C C C C C C C C C	Kontakt restartujący. Krótkotrwałe zwarcie kontaktów wymusza restart interfejsu. Po restarcie wskaźnik LED_SY (pomarańczowy) pulsuje przez ok. 2s
MEM MD1 MD2 MD2 MD2 MD2 MD2 MD2 MD2 MD2 MD2 MD2	Tryb serwisowy. Zwarcie kontaktów umożliwia przeprogramowanie nastaw konfiguracyjnych interfejsu. Kontakty te musza być zwarte zarówno w trybie manualnego programowania adresu jak i podczas programowania z poziomu programu RogerVDM.
FDM MD1 MD2 CC WWQL	Wgrywanie oprogramowania. Zwarcie kontaktów ustawia interfejs w tryb aktualizacji oprogramowania. Możliwe jest wtedy przesłanie nowego oprogramowania z poziomu programu RogerVDM.

Tab. 1 Funkcje kontaktów programujących i serwisowych

Wskaźniki LED

Wskaźniki LED umieszczone są wewnątrz obudowy interfejsu i są one widoczne od góry obudowy interfejsu. Wskaźniki LED wykorzystywane są do sygnalizacji wybranych stanów urządzenia w czasie programowania jak i czasie normalnej pracy. Pulsowanie synchroniczne wszystkich wskaźników sygnalizuje brak komunikacji z kontrolerem dostępu.

Rys. 4 Wskaźniki LED

Programowanie adresu interfejsu

Zarówno w systemie RACS 4 jak i RACS 5 konieczne jest ustawienie adresu, na jakim będzie pracował interfejs. Programowanie adresu można przeprowadzić manualnie (bez udziału komputera) lub z poziomu programu RogerVDM. W przypadku pracy w systemie RACS 4 dopuszczalne są adresy z zakresu 0-3, natomiast w przypadku systemu RACS 5, adresy 100-115.

Uwaga: Występująca na początku adresu RACS 5 jedynka nie podlega programowaniu manualnemu.

Manualne programowanie adresu:

- Wyłącz zasilanie
- Umieść zworkę na kontaktach MEM
- Na kontaktach programujących MD1 i MD2 wybierz tryb RACS 4 (Tab. 2)
- Wykonaj mostek pomiędzy zaciskami CLK/A i DTA/B
- Załącz zasilanie
- Po załączeniu zasilania zacznie migać LED_ST (czerwony)
- Usuń połączenie pomiędzy zaciskami CLK/A i DTA/B
- Zliczaj mignięcia pomarańczowego wskaźnika LED_SY i w momencie, gdy ilość mignięć będzie odpowiadała adresowi, który chcesz ustawić odłącz zasilanie
- Usuń zworkę z kontaktów MEM
- Załącz zasilanie, interfejs może być podłączony do systemu

Uwaga: Aby zaprogramować adres 100 (dla RACS 5) lub 0 (dla RACS 4) odczekaj na 16 błyśnięć wskaźnika LED_SY (pomarańczowy). Po 16-tym mignięciu LED_SY zapali się na stałe a LED_ST (czerwony) będzie pulsował. Usuń zworkę z kontaktów MEM i zrestartuj zasilanie.

Ilość błyśnięć	Adres RACS 4	Adres RACS 5
1	1	101
2	2	102
3	3	103
4	4	104
5	5	105
6	6	106
7	7	107
8	8	108
9	9	109
10	10	110
11	11	111
12	12	112
13	13	113
14	14	114
15	15	115
16	0	100

Tab. 2 Zasady przeliczania ilości błysków na adres RACS 4 i RACS 5

Wybór trybu pracy interfejsu MCI-1

Czytnik LRT-1 może być wykorzystany zarówno w systemie RACS 4 jak i RACS 5. Wybór rodzaju systemu przeprowadza się przy pomocy zworek MD1 i MD2.

Kontakt	Funkcja
MD1 —————— —— MD2 ——— —— ———————————————————————————————	Tryb RACS 4. Interfejs jest podłączony do linii RACS CLK/DTA (zaciski CLK i DTA) kontrolera dostępu serii PRxx1 lub PRxx2
MD1 • ••• MD2 • ••• • • • •	Tryb RACS 5. Interfejs jest podłączony do magistrali RS485 (zaciski A i B) kontrolera dostępu serii MC16

Tab. 3 Wybór trybu pracy interfejsu MCI-1

Ze względu na to, że pracując zarówno w trybie RACS 4 jak i RACS 5 czytnik zwraca 32 bity kodu karty (zamiast typowych 40 bitów kodu) w obydwu systemach potrzebne są dodatkowe kroki konfiguracyjne w celu jego poprawnej obsługi. W systemie RACS 4 należy przełączyć system do pracy z kodami 24 bit (PRMaster/Narzędzia/Opcje/Karty opcja: *Stosuj 24 bity*). W systemie RACS 5, należy zdefiniować dodatkowy typ Nośnika o typie 32 bit i przypisać go tym użytkownikom, którzy będą korzystać z czytnika LRT-1. Alternatywnie, w systemie RACS 5 można zdefiniować wyłącznie jeden typ nośnika 32 bit i stosować go zarówno wobec czytników zwracających więcej niż 32 bity jak i czytnika LRT-1.

Konfigurowanie z poziomu programu RogerVDM

Zarówno adres jak i pozostałe nastawy konfiguracyjne urządzenia mogą być zaprogramowane z poziomu programu RogerVDM (Windows). Podłączenie do komputera programującego wymaga użycia interfejsu RUD-1 lub innego oferującego RS485.

Procedura programowania z komputera:

- Wykonaj połączenia elektryczne wg rysunku 5
- Umieść zworkę na kontaktach MEM
- Podłącz RUD-1 do portu USB komputera
- Uruchom program RogerVDM
- W okienku Wybierz urządzenie wybierz MCI-1 i kanał komunikacyjny RS485
- W polu Port szeregowy wskaż port COM, pod którym jest zainstalowany interfejs RUD-1
- Program ustanowi połączenie z programowanym urządzeniem i wczyta jego bieżące ustawienia

konfiguracyjne

- Wprowadź nastawy konfiguracyjne wg potrzeb
- Naciśnij klawisz Wyślij do urządzenia, aby przesłać nowe nastawy do urządzenia
- Naciśnij klawisz Zapis do pliku, aby zapisać bieżące nastawy do pliku na dysku
- W menu górnym wybierz Urządzenie i następnie Rozłącz
- Podłącz programowane urządzenie do instalacji i sprawdź jego działanie

Rys. 5 Podłączenie MCI-1 do interfejsu RUD-1 w celu konfiguracji

Parametry konfiguracyjne interfejsu

Poniżej przedstawiono zestaw nastaw konfiguracyjnych interfejsu MCI-1. Wszystkie, wymienione poniżej nastawy są dostępne z poziomu programu RogerVDM w trakcie niskopoziomowej konfiguracji urządzenia. Parametry Adres RS485 oraz Adres RACS CLK/DTA można również zaprogramować manualnie bez udziału komputera.

Parametr	Funkcja
Adres RS485	Parametr określa adres interfejsu MCI-1 na magistrali RS485. Adres powinien być ustawiony w zakresie 100- 115. Parametr dotyczy tylko trybu RACS 5.
Adres RACS CLK/DTA	Parametr określa adres interfejsu MCI-1 na magistrali RACS CLK/DTA. Adres powinien być ustawiony w zakresie 0-3. Parametr dotyczy tylko trybu RACS 4.
Opóźnienie sygnalizacji braku komunikacji z kontrolerem [s]	Parametr określa czas, po którym następuje załączenie sygnalizacji braku komunikacji z kontrolerem. Parametr może przybierać wartości z zakresu 0-64s. Parametr dotyczy tylko trybu RACS 5.
Szyfrowanie komunikacji RS485	Parametr umożliwia załączenie szyfrowania komunikacji RS485 do kontrolera MC16. Parametr dotyczy tylko trybu RACS 5.
Hasło szyfrowania komunikacji RS485	Klucz szyfrujący komunikację. Parametr dotyczy tylko trybu RACS 5. Zakres wartości: 4-16 znaków ASCII
Typ nośnika	Parametr określa typ danych zwracanych przez czytnik do kontrolera. Domyślnie, parametr ustawiony jest na wartość: 32 bit. Parametr dotyczy tylko trybu RACS 5.
Klasa nośnika	Parametr określa klasę nośnika zwracanego przez urządzenie. Parametr dotyczy tylko trybu RACS 5.
Komentarz do urządzenia DEV	Dowolny tekst, który potem pojawi się w programie zarządzającym systemem i którego celem jest ułatwienie identyfikacji urządzenia. Parametr dotyczy tylko trybu RACS 5.
Komentarz do obiektu CDI	Dowolny tekst, który potem pojawi się w programie zarządzającym systemem i którego celem jest ułatwienie identyfikacja obiektu CDI (czytnika). Parametr dotyczy tylko trybu RACS 5.

Tab. 4 Nastawy konfiguracyjne interfejsu MCI-1

Aktualizacja oprogramowania

Oprogramowanie urządzenia może być aktualizowane z poziomu programu RogerVDM (Windows). Wgrywanie oprogramowania wymaga użycia interfejsu RUD-1.

Procedura programowania z komputera:

- Wykonaj połączenia elektryczne wg rysunku
- Umieść zworkę na kontaktach FDM
- Podłącz RUD-1 do portu USB komputera
- Uruchom program RogerVDM
- W menu górnym wybierz Narzędzia i następnie Aktualizacja firmware
- Postępuj zgodnie z instrukcjami na ekranie komputera
- Po zakończeniu wgrywania oprogramowania usuń zworkę z kontaktów FDM
- Zrestartuj interfejs przy pomocy zasilania lub kontaktów RES

Rys. 6 Podłączenie MCI-1 do interfejsu RUD-1 w celu wgrania oprogramowania

Podłączenie do kontrolera dostępu

Przed zainstalowaniem interfejsu należy na kontaktach MD1 i MD2 wybrać właściwy tryb pracy oraz zaprogramować adres, który powinien być ustawiony w zakresie 100-115 (RACS 5) lub 0-3 (RACS 4). Programowanie adresu można wykonać manualnie natomiast kompleksowe zaprogramowanie parametrów interfejsu wymaga programowania z poziomu programu RogerVDM. Czytnik LRT-1 należy podłączyć do interfejsu MCI-1 za pomocą skrętki komputerowej bez ekranu. Do zasilania czytnika można użyć niewykorzystane przewody skrętki.

Rys. 7 Podłączenie czytnika do kontrolera MC16

Rys. 8 Podłączenie czytnika do kontrolerów PRxx1 i PRxx2

Instalacja

- 1. Czytnik LRT-1 należy zamontować na pionowym fragmencie konstrukcji (ściany, słupka) w miejscu wolnym od silnych zakłóceń elektrycznych oraz w oddaleniu od przedmiotów metalowych.
- 2. Przed wykonaniem połączeń elektrycznych należy skonfigurować moduł interfejsu MCI-1.
- 3. Ustawienie adresu MCI-1 zarówno dla trybu RACS 4 jak i RACS 5 może być przeprowadzone manualnie bez konieczności podłączania do komputera.
- Pełne konfigurowanie nastaw modułu może być wykonane jedynie z poziomu programu RogerVDM i wymaga użycia interfejsu RUD-1.
- 5. Interfejs MCI-1 musi być zamontowany w pomieszczeniu wewnętrznym, najlepiej w tej samej obudowie, co kontroler.
- 6. Interfejs MCI-1 może być przymocowany do podłoża za pomocą dwóch wkrętów lub na szynie DIN przy użyciu dostarczonego w komplecie klipsa.
- 7. Wszelkie podłączenia elektryczne należy wykonać przy odłączonym napięciu zasilania.
- 8. Po wykonaniu połączeń elektrycznych oraz konfiguracji należy wykonać uruchomienie oraz sprawdzenie systemu.

Rys. 9 Widok zewnętrzny czytnika

Dane techniczne

Parametr	Wartość
Zasilanie	11-15VDC
Pobór prądu LRT-1	Średnio 290mA
Pobór prądu MCI-1	Średnio 40mA
Odległość interfejsu MCI-1 od czytnika LRT-1	Maks. 1200m
Odległość interfejsu MCI-1 od kontrolera MC16	Maks. 1200m
Odległość interfejsu od kontrolera PRxx1 lub PRxx2	Maks. 150m
Środowisko pracy LRT-1	Klasa IV; warunki zewnętrzne ogólne; temperatura otoczenia: -25°C- +60°C; wilgotność względna: od 10 do 95% (bez kondensacji)

Środowisko pracy MCI-1	Klasa II, warunki wewnętrzne, temperatura otoczenia: -10°C- +50°C, wilgotność względna: 10 do 95% (bez kondensacji)
Ochrona przed wnikaniem	IP65 (czytnik LRT-1)
Wymiary (wys. x szer. x gł.)	240 x 233 x 40mm
Waga	0,93 kg
Certyfikaty	CE

Oznaczenia handlowe

Produkt	Opis
LRT-1	Czytnik dalekiego zasięgu
MCI-1	Interfejs komunikacyjny

Historia produktu

Wersja	Data	Opis
LRT-1 v1.0	08/2017	Pierwsza komercyjna wersja produktu

Symbol ten umieszczony na produkcie lub opakowaniu oznacza, że tego produktu nie należy wyrzucać razem z innymi odpadami gdyż może to spowodować negatywne skutki dla środowiska i zdrowia ludzi. Użytkownik jest odpowiedzialny za dostarczenie zużytego sprzętu do wyznaczonego punktu gromadzenia zużytych urządzeń elektrycznych i elektronicznych. Szczegółowe informacje na temat recyklingu można uzyskać u odpowiednich władz lokalnych, w przedsiębiorstwie zajmującym się usuwaniem odpadów lub w miejscu zakupu produktu. Gromadzenie osobno i recykling tego typu odpadów przyczynia się do ochrony zasobów naturalnych i jest bezpieczny dla zdrowia i środowiska naturalnego. Masa sprzętu podana jest w instrukcji.

Kontakt: Roger sp. z o.o. sp.k. 82-400 Sztum Gościszewo 59 Tel.: +48 55 272 0132 Faks: +48 55 272 0133 Pomoc tech.: +48 55 267 0126 Pomoc tech. (GSM): +48 664 294 087 E-mail: pomoc.techniczna@roger.pl Web: www.roger.pl